

Exploring Venus with

Balloons –

Science Objectives and

Recent Technical

Advances

Kevin H. Baines,
Sanjay Limaye
Jeffery L. Hall
Sushil K. Atreya
Mark Bullock
David Crisp
David H. Grinspoon
Christopher T. Russell
Kevin Zahnle

IPPW-9
Toulouse, France
June 2012

VENUS
ATMOSPHERIC
LONG-DURATION
OBSERVATORY

for in-situ RESEARCH

Submitted in response to AO NNH10ZDA007O

Dr. Kevin H. Baines

Principal Investigator Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA & SSEC, University of Wisconsin-Madison

Richard S. Grammier Director for Solar System Exploration

Jet Propulsion Laboratory California Institute of Technology Pasadena. CA

CALIFORNIA INSTITUTE OF TECHNOLOGY BALL AEROSPACE & TECHNOLOGIES CORPORATION JET PROPULSION LABORATORY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA AMES RESEARCH CENTER NASA GODDARD SPACE FLIGHT CENTER NASA LANGLEY RESEARCH CENTER NASA WALLOPS FLIGHT FACILITY UNIVERSITY OF WISCONSIN-MADISON

VALOR: "Experiencing Venus"

A Long-Duration "World Tour" of our Sister World to Explore its

- Origins
- Evolution/History
- Current Processes
 - Circulation, Dynamics
 - Climate
 - Chemistry and
 - Meteorology

VALOR: "Experiencing Venus"

A Long-Duration "World Tour" of our Sister World to Explore its

- Origins
- Evolution/History
- Current Processes
 - Circulation, Dynamics
 - Climate
 - Chemistry and
 - Meteorology

Basic Questions

- Was Venus Ever Like Earth?
 - Oceans?
 - Life?

VALOR: "Experiencing Venus"

A Long-Duration "World Tour" of our Sister World to Explore its

- Origins
- Evolution/History
- Current Processes
 - Circulation, Dynamics
 - Climate
 - Chemistry and
 - Meteorology

Basic Questions

- Was Venus Ever Like Earth?
 - Oceans?
 - Life?
- Why did it Evolve so Differently?
 - Hurricane-Force Winds
 - Hellish Temperatures (900° F, 470° C)
 - Extreme Pressures

 (Like being 3000 feet underwater)

VALOR Decadal Study Goals

VALOR Directly Addresses Cross-cutting Themes and Major Questions of The 2011 Decadal Study:

- Building New Worlds—Understanding Solar System Beginnings
 - What governed the accretion, supply of water, chemistry, and internal differentiation of the inner planets and the evolution of their atmospheres, and what roles did bombardment by large projectiles play?
- Planetary Habitats Searching for the Requirements for Life
 Did Mars or Venus host ancient aqueous environments conducive to early life, and is there evidence that life emerged?
- Workings of Solar Systems—Revealing Planetary Processes Through Time.
 - Can understanding the roles of physics, chemistry, geology, and dynamics in driving planetary atmospheres and climates lead to a better understanding of climate change on Earth?

How have the myriad chemical and physical processes that shaped the Solar System operated, interacted, and evolved over time?

VALOR Science Objectives And Instruments

VALOR Seeks to:

- Provide the missing links to a fundamental understanding of the origin and evolution of both Venus and the other terrestrial planets
- Assess Venus' climate and conduct comparative climatology studies between Venus and Earth with respect to greenhouse gases and global climate change
- Elucidate Venus' reactive chemistry, including the history of volatile compounds and evidence of present-day volcanism (if any)
- Improve understanding of general atmospheric circulation and dynamics, in particular, the phenomenon of super rotation.

Balloon-borne aerostat at 55.5-km altitude

Instruments	Measurements
VMS / TLS (Venus Mass Spectrometer; Tunable Laser Spectrometer)	Abundances of - Noble gases and - isotopes - Chemically- active trace species (SO ₂ , OCS, CO,H ₂ O) - Light isotopes (C,H,O, N, S)
VASI (Venus Atmospheric Structure Investigation)	PressureTemperatureVertical windParticle size/density; uv
ART (Aerostat Radio Tracking)	• 3-D winds
LiD (Lightning Detector and Magnetometer)	Lightning rate/strengthRemnant Magnetism
VEMEX (Venus Microphone Experiment)	• Venus sounds/thunder

VALCAM

Balloon/cloud

Why Use a Balloon?

Mission Drivers

- Understanding the circulation, dynamics, chemistry, & meteorology of Venus requires in-situ mobile platform measurements of
 - Vertical, zonal (East-West), meridional (poleward) motions and temperatures,
 - Constituent abundances and cloud densities and particle sizes
 - Day & night tracking; front & backside tracking
- Data can only be acquired with an in-situ mobile platform
- In situ mobile measurements are key to understanding
 - the roles of waves (e.g., gravity, planetary), turbulence, and convective processes in transporting momentum vertically and latitudinally
 - the key pathways of the sulfur cycle and its role in producing and maintaining clouds, which regulate the principal heatabsorbing layer in Venus
 - Venus's mysterious global super-rotation

VALOR:

Long-Duration Flight in the Climatologically- and Meteorologically--Interesting Region of the Venusian Skies

THE VALOR MISSION ARCHITECTURE

- Single, 7.3-m Super-Pressure Balloon, 100 kg Payload
- Nominal (Baseline) Mission:
 - Atmospheric Flight Lasting 24 days
 - Multiple Circumnavigations (~5)
 - Fly from 25° N. Lat to > 60° N. Lat
 - Based on Galileo observations of Northern Hemisphere
 - Fly at 55.5 km altitude (mean); 0.5 bar, 24 C
- Back-up (Threshold Mission):
 - Atmospheric Flight:
 - 8 days
 - ~ 1.4 Globa
 - Fly from 25° N to
 - ~ 30-45° N Lat

VALOR Gondola Instrument Complement

VALOR In-Situ Atmospheric Exploration

Salient Science Measurements

- Noble Gases and Their Isotopes: Formation/Evolution
- Isotopes of Light Gases: Formation/Evolution

Before VALOR After VALOR

	<u>▼</u>						
		Current	Implied	Required	VMS/ TLS		
Constituent	Primary Science Objective	Measurements	Uncertainty	Uncertainty	Accuracy		
Noble Gases							
¹³² Xe	Origin/evolution of terrestrial planets: Roles of	~1.9 ppb	>200%	10%	10%		
	blowoffs, comets, and planetesimals						
⁸⁴ Kr	Origin/evolution: Cold comets as atmospheric	0.7 ± 0.35 ppm or	>100%	10%	10%		
	gas supplier	$0.05 \pm 0.025 \text{ ppm}$	(average)				
³⁶ Ar	Planetary origin: Roles of comets and planetesimals	31 ± 9 ppm	33%	10%	10%		
²⁰ Ne	Planetary origin: Earth and Venus, a common kinship?	7 ± 3 ppm	43%	25%	25%		
⁴ He	Early evolution: Interior outgassing	12 (+24/-8) ppm	>60%	5%	5%		
Noble Gas Is	otopic ratios						
¹²⁹ Xe/ ¹³⁰ Xe	Early evolution: Large atmospheric blow-off	~3	>100%	1%	1%		
¹³⁶ Xe/ ¹³⁰ Xe	Origin/evolution: U-Xe hypothesis	~1	>100%	1%	1%		
⁴⁰ Ar/ ³⁶ Ar	Early history: Interior outgassing	1.03 ± 0.04 or	12%	2%	1%		
		1.19 ± 0.07	(average)				
³⁶ Ar/ ³⁸ Ar	Late formation: Large impact	5.56 ± 0.62 or	12%	2%	1%		
		5.08 ± 0.05	(average)				
²¹ Ne/ ²² Ne	Earth/Venus origins: Twin planet hypothesis	<0.067	>200%	5%	1%		
²⁰ Ne/ ²² Ne	Earth/Venus origins: Hydrodynamic escape	11.8 ± 0.7	6%	5%	5%		
³He/⁴He	Evolution: Impact of solar wind	< 3 x 10 ⁻⁴	>200%	10%	10%		
Light-Elemer	nt I sotopic Ratios						
HDO/H ₂ O	Atmospheric loss, past/current volcanic activity	0.019 ± 0.006	32%	3%	0.2%		
¹⁵ N/ ¹⁴ N	Atmospheric loss since planetary formation	0.0037 ± 0.008	22%	3%	2%		
¹⁷ 0/ ¹⁶ 0	Planetary origin: Earth and Venus, a common kinship?			0.01%	0.01%		
³³ S/ ³² S	Past/current volcanic activity, magmatic composition	~ 0.0079		1%	0.2%		

[after Pepin, Icarus 92, 2-79, 1991]

VALOR *In-Situ* Atmospheric Exploration

Salient Science Measurements

- Noble Gases and Their Isotopes: Planet Origin/Evolution
- Isotopes of Light Gases: Planet Origin/Evolution
- Precise Abundances (<0.01-3%, generally) and Detailed Vertical Distributions of Key Reactive Gases: Chemistry/Meteorology

Constituent	Expected Value	Desired Measurement Accuracy	MS accuracy	TLS Accuracy
H_2O	30 ± 15	0.1	0.25	
_	ppm			0.03
CO	33 ± 12	0.01		
	ppm		N/A	0.0001
OCS	$4.4 \pm 4 \text{ ppm}$	0.01	0.25	
				0.00001
SO_2	150 ± 30	0.1	0.1	
	ppm			<0.01%
H_2S	3 ± 2 ppm	0.25	0.25	N/A
S_8	<30 ppb	0.5	1 ppb	/NA

Sulfuric Cloud Meteorology: Coupled Dynamics and Photochemistry

- Sulfur-cyle H₂SO₄ clouds depend on amounts of UV light, water, and SO₂.
 - UV light depends on time of day
 - Water variable at cloud base (Tsang et al, 2010)
 - SO₂: Expected to vary by > 200% over 2 km of
 VALOR bobbing under equilibrium conditions
 - Vertical and horizontal dynamics can dramatically vary SO₂ supply, and thus H₂SO₄ cloud formation

VALOR *In-Situ* Atmospheric Exploration

Salient Science Measurements

- Noble Gases and Their Isotopes: Planet Formation/Evolution
- Isotopes of Light Gases: Planet Formation/Evolution
- Precise Abundances (<0.01-3%) and
 Detailed Vertical Distributions
 of Key Reactive Gases : Chemistry/Meteorology
- Mean Zonal and Tidal Flow: Circulation/Meteorology
- Meridional Character of 3-D Circulation/Meteorology
 Momentum and Heat Transfer; Hadley Cells

Venus Atmospheric Circulation: MAJOR Observational Deficiencies

- I. The planet wide average flow is not known at any vertical level for any latitude
 - Latitude-longitude structure of the cloud tracked winds available mostly on the dayside at mostly one level ~ 67-70 km and a few observations (Galileo SSI) at ~ 61 km for only about 6-8 hours of local solar time.
 - Nightside cloud-tracked winds from VeX/VIRTIS or ground based observations are at a different level than the dayside cloud-tracked winds
 - Lack of knowledge of the mean zonal component means that the latitudinal transport of heat and momentum can not be evaluated
 (I.e, knowledge of u'v' requires knowledge of mean u to compute it)

Venus Atmospheric Circulation: MAJOR Observational Deficiencies

- II. Thermal tides are likely very important in determining the vertical momentum transport in and below the cloud layer
- Latitudinal transport by waves are indicated in GCMs, but the detailed structure differs from model to model.
- Models are not very mature yet and need better observations for comparisons
- NEXT TO THE MEAN ZONAL FLOW, THERMAL TIDE CHARACTERISTICS ARE THE MOST IMPORTANT MISSING INGREDIENTS FOR UNDERSTANDING GLOBAL CIRCULATION

VALOR In-Situ Atmospheric Exploration

Salient Science Measurements

- Noble Gases and Their Isotopes: Planet Formation/Evolution
- Isotopes of Light Gases: Planet Formation/Evolution
- Precise Abundances (<0.01-3%) and
 Detailed Vertical Distributions
 of Key Reactive Gases : Chemistry/Meteorology
- Mean Zonal and Tidal Flow: Circulation/Meteorology
- Meridional Character of 3-D Circulation/Meteorology
 - Momentum and Heat Transfer; Hadley Cells
- Vertical Character of Dynamics/Circulation á la VEGA Balloons

- Convection, Turbulence
- Hadley Cell: Latitudinal Boundaries

VALOR: Riding the Waves While Circumnavigating Venus

Vertical motions are unknown at Venus except for Exciting 2-day VEGA Experience

 What are the Roles of Convection, Waves, in Transporting Heat, Momentum, Producing Hurricane-Force Global Super-Rotating Winds?

VALOR Balloon

VALOR: Riding the Waves While Circumnavigating Venus

Vertical motions are unknown at Venus except for Exciting 2-day VEGA Experience

 What are the Roles of Convection, Waves, in Transporting Heat, Momentum, Producing Hurricane-Force Global Super-Rotating Winds?

VEGA regularly "bobbed" vertically ~ 3 km riding gravity waves

VALOR will "bob" ~ 1 km

 Will measure vertical motion and wave characteristics over all times-of-day, longitudes, and many types of terrain
 Waves vs Convection

VALOR Will Measure, Directly, 3-D Winds at High Temporal and Spatial Resolution Over all Longitides from Temperate to Polar Latitudes

VALOR Balloon

VEGA Balloon

In-Situ Atmospheric Exploration

Salient Science Measurements

- Noble Gases and Their Isotopes: Planet Formation/Evolution
- Isotopes of Light Gases: Planet Formation/Evolution
- Precise Abundances (<0.01 3%) and
 Detailed Vertical Distributions
 of Key Reactive Gases : Chemistry/Meteorology
- Mean Zonal Flow and Tidal Flow: Circulation/Meteorology
- Meridional Character of 3-D Circulation/Meteorology a la VeGa
 - Momentum and Heat Transfer; Hadley Cell
- Vertical Character of Dynamics/Circulation a la VeGa Balloons
 - Gravity Waves
 - Convection, Turbulence
 - Hadley Cell: Latitudinal Boundaries
- Coupled Dynamics/Chemistry of Cloud Evolution Climate
 - Simultaneous Measurements of Parent Gas Abundances, Cloud Number Density and Particle size, Updrafts/Downdrafts, Convection
 - Clear Measurements of Frequency and Strength of Lightning Sampled over all Longitudes

Summary

VALOR's Intensive *in-situ*, Global-Scale Exploration of the Venus Atmosphere is the Next Step for Understanding the Origin, Evolution, Circulation, Meteorology and Climate of our Sister World

Summary

VALOR's Intensive *in-situ*, Global-Scale Exploration of the Venus Atmosphere is the Next Step for Understanding the Origin, Evolution, Circulation, Meteorology and Climate of our Sister World

Balloon Technology Overview

- JPL has been working on the balloon technology development since 2005 with its partners ILC Dover (manufacturer) and NASA Wallops.
- We use a spherical superpressure balloon design to achieve 1+ month flights at a ~55 km altitude at Venus.
- Substantial progress has been achieved during that time including:
 - Fabrication and testing of two 5.5 m diameter prototype balloons.
 - Dozens of laboratory tests of material coupons for mechanical, thermal, chemical and optical property characterization.
 - A successful aerial deployment and inflation flight experiment.

5.5 m prototype balloon

Aerial deployment and inflation test

Recent Technology Focus: Balloon Lifetime

- The work to date builds a strong case that we can fabricate a balloon that can survive the test, storage, and aerial deployment and inflation stages of the mission.
- A key remaining issue is assessing the likelihood that the desired 1+ month mission will be achieved.
- The key threat to mission lifetime after surviving deployment and inflation is gas leakage and/or acid penetration through small pinhole defects created by the folding, deployment or inflation processes.
- There are two aspects to this problem:
 - 1. Will pinholes be formed?
 - 2. If they are formed, what is the effect on mission lifetime?
- We have done many severe folding tests on the balloon material and have never been able to create a hole in the protective Teflon layer that allowed acid to penetrate (or gas to escape).
 - But further leakage tests still need to be done after deployment and inflation (the prior test focused on gross structural survival, not leakage).
- Our most recent work has focused on Question #2.

Pinhole Effects

- Calculations indicate that a single pinhole between 150 and 200 μm will leak enough helium gas to result in a < 1 month mission (see graph).
- We have already demonstrated pinhole-free performance in the lab for 1 month.
 - Balloon was fabricated, packaged, shipped, unfolded and inflated in the lab at JPL.
- The question of acid penetration is focused on pinholes < 150 μm in size
 - Anything bigger is already a failure from the point of view of helium loss.

Example of highly wrinkled material sample that does not fail a sulfuric acid exposure test.

Deliberate Pinhole Experiments

- We are in the middle of a series of experiments in which we deliberately make a pinhole in the balloon material and examine how much damage is done over time from sulfuric acid penetration.
- Tentative results with an 80 μm diameter hole indicate that virtually no sulfuric acid can penetrate against the escaping flow of gas.
- Even if there is no gas flow (zero pressure balloon), acid enters the hole <u>very</u> slowly:
 - The thin Aluminum layer under the Teflon dissolves at a rate of ~ 1 mm/day. But the resultant small non-reflective spot will have a negligible effect on the balloon.
 - The Vectran strength element of the balloon laminate material is not affected.
 - The hole itself does not grow because the Teflon layer is acid-resistant.
- Conclusion: acid penetration through small pinholes will not limit balloon lifetime to less than 12month.

